Mark schemes

Q1.

(a)) Dehydration Allow (acid catalysed) Elimination				
	Conc H ₂ SO ₄ Allow Conc H ₃ PO ₄	М1 M2			
(b)	Br ₂ Allow bromine (water) Allow Cl ₂ or l ₂ Allow O ₂ if epoxide route used	M1			
	+ Br_2 + Br_3 + Br_4 + Br_5 + Br_5 + Br_6 + Br_7 +	142			
	NaOH Or KOH or other suitable strong alkali	M2 M3			
	H = 2NaOH + 2NaOH + 2NaBr Allow this equation with molecular formulae				
(c)	M1 (nucleophilic)addition-elimination Note lone pair required for M5	M4 M1			
	OH Cl OH COCl H OH OH COCl M2 curly arrow from lp on O to C M4 for structure of intermediate M3 curly arrow from double bond to O M5 for 3 curly arrows	M2 M3 M4 M5			

(d) Less energy used **OR** Better yield

		OR reduces practical losses, simpler plant,	M1	
	Less w	aste OR Less pollution		
		OR maximises the use of raw materials in the process into useful products, saves resources	M2	[13]
Q2. B				
		CH ₃ CH ₂ CN		[1]
Q3. A				
				[1]
Q4.				
(a)	M1 N	NaOH Only score M2 if M1 gained, but mark on from hydroxide. Mention of acid loses M1 & M2	1	
	M2 A	Aqueous/(warm)		
		Ignore alcoholic / conc / dil.	1	
	M3 (Fractional) distillation or described Not just evaporation; not reflux		
		Allow chromatography	1	
(b)	M1 S	S is CH ₃ CH(CN)CH ₂ CH ₃ Allow without brackets	1	
	Step 3			
	M2 k	KCN (mark on from CN [.]) Not HCN, not KCN with acid	1	
	M3 <u>A</u>	Alcoholic / (aqueous) Allow ethanolic		
		Can only score M3 if M2 gained	1	

Step 4

M4 H₂

LiAIH₄

Na Can only score M5 if M4 gained

M5 Ni or Pt or Pd

Ethoxyethane or ether

 LiAIH_4 with acid loses both M4 and M5

Ignore 'followed by acid'

Na

Ethanol NOT NaBH₄ OR Sn/HCl Penalise other extras as list Ignore pressure or temperature

[8]

1

1